ANNEXE 2
Schéma Directeur d’Alimentation en Eau Potable

Phase 1

<table>
<thead>
<tr>
<th>Dossier : 11_068</th>
<th>Date : 27/08/2012</th>
<th>Dressé par : Dimitri SECHAUD Le : 07/01/2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modifications :</td>
<td>Vu et approuvé par : Vincent CROCI Le : 12/02/2013</td>
<td></td>
</tr>
<tr>
<td>Version 2.0 :</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entité Adjudicatrice : SIAEP du Perche Sarthois
11, Rue de la Poste
72400 La Chapelle du Bois

Bureau d’études : INTEGRALE ENVIRONNEMENT
34 rue Lucien GIRARD BOISSEAU
95 380 PUISEUX EN France
Tél. : 01.34.68.32.48
contact@integrale-environnement.fr

DESSIN CONSEIL ET COORDINATION
Tél : 02.43.27.33.33
Fax : 02.43.27.33.99
s.plu@dessin-conseil.com
Table des Matières

1 Objet de l'Etude .. 5

2 Présentation de la Zone d’Etude ... 6
2.1 Localisation .. 6
2.2 Démographie .. 7

3 Présentation des Ressources Actuelles ... 8
3.1 Présentation Générale ... 8
3.2 Forage du Géolet ... 8
3.2.1 Description .. 8
3.2.2 Coupe Lithologique du Forage .. 9
3.2.3 Coupe Technique ... 10
3.2.4 Evolution du Niveau d’eau en Novembre 2012 ... 11
3.3 Forage de la Tannerie (F1, F2 et F3) ... 12
3.3.1 Description .. 12
3.3.2 Coupe Lithologique des Forages .. 13
3.3.3 Coupe Technique des Forages .. 18
3.3.4 Evolution du Niveau d’eau en Novembre 2012 ... 22
3.4 Bilan des Ressources ... 25
3.4.1 Données initiales .. 25
3.4.2 Fonctionnement des différents forages du Syndicat .. 26
3.4.3 Données d'exploitation du Syndicat en 2012 .. 30
3.4.4 Forage de reconnaissance de Nogent le Bernard ... 32

4 Description du Service d’Alimentation en Eau Potable ... 34
4.1 Description du Réseau .. 34
4.2 Description des Interconnexion (Achats, Ventes, Secours) .. 34
4.2.1 Interconnexion avec la commune de la Ferte Bernard .. 34
4.2.2 Interconnexion avec le SIAEP du Vairais ... 34
4.3 Inventaire des Equipements .. 35
4.3.1 Réservoirs .. 35
4.3.2 Equipements Electromécaniques .. 41
4.3.3 Equipements hydraulique particulier ... 42
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Fonctionnement du réseau</td>
<td>47</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Asservissement et consignes de régulation</td>
<td>47</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Sectorisation du Syndicat</td>
<td>47</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Branchements plombs</td>
<td>49</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Sécurisation</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>Etude des Consommations et des Besoins actuels</td>
<td>50</td>
</tr>
<tr>
<td>5.1</td>
<td>Évolution de la population</td>
<td>50</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Évolutions Passées</td>
<td>50</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Évolutions Futures</td>
<td>51</td>
</tr>
<tr>
<td>5.2</td>
<td>Besoins et Rendement</td>
<td>51</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Évolutions Passées</td>
<td>51</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Évolutions Passées</td>
<td>54</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Coefficient de Pointe</td>
<td>54</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Récapitulatif</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>Analyse de la Qualité de l’Eau</td>
<td>56</td>
</tr>
<tr>
<td>6.1</td>
<td>Le contrôle sanitaire réglementaire</td>
<td>56</td>
</tr>
<tr>
<td>6.1.1</td>
<td>La Ressource</td>
<td>56</td>
</tr>
<tr>
<td>6.1.2</td>
<td>La Production</td>
<td>56</td>
</tr>
<tr>
<td>6.1.3</td>
<td>La Distribution</td>
<td>56</td>
</tr>
<tr>
<td>6.2</td>
<td>Données du SIAEP du Perche Sarthois</td>
<td>57</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Analyse de Production</td>
<td>57</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Analyse de Distribution</td>
<td>58</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Analyse de Distribution : Point de Prélèvement</td>
<td>59</td>
</tr>
<tr>
<td>7</td>
<td>Sécurisation de l’approvisionnement en eau potable</td>
<td>62</td>
</tr>
<tr>
<td>7.1</td>
<td>Outils AESN</td>
<td>62</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Indicateur de probabilité (P)</td>
<td>62</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Indicateur de gravité (G)</td>
<td>64</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Détermination de l’indicateur de probabilité</td>
<td>65</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Détermination de l’indicateur de gravité</td>
<td>65</td>
</tr>
<tr>
<td>7.1.5</td>
<td>Conclusions – Outils AESN</td>
<td>67</td>
</tr>
<tr>
<td>7.2</td>
<td>Paramètres techniques</td>
<td>68</td>
</tr>
</tbody>
</table>
7.2.1 Méthodologie ... 68
7.2.2 Détermination de la note NT... 69
7.2.3 Conclusion .. 69
7.3 Indice : Sécurité à la Production ... 70
7.3.1 Situation actuelle ... 70
7.3.2 Situation en 2028 .. 70
7.4 Indice : Coefficient de Stockage ... 72
7.4.1 Coefficient de stockage sur l’ensemble du Syndicat – Situation actuelle.............. 72
7.4.2 Coefficient de stockage sur l’ensemble du Syndicat – Situation 2028 72
7.5 Secours en provenance de l’extérieur ... 73
7.6 Défense Incendie ... 74
7.7 Conclusion ... 75

8 Conclusion et Etat des Lieux Préliminaire ... 76
8.1 Les atouts du Syndicat ... 76
8.2 Les faiblesses du Syndicat ... 76
8.3 Premières pistes de développement ... 77
1 Objet de l’Étude

Par délibération du 15 Février 2012 le comité syndical du SIAEP du Perche Sarthois a décidé de réaliser le schéma directeur de son service d’eau potable.

La capacité totale de production d’eau potable du SIAEP du Perche Sarthois est largement suffisante pour assurer en pointe une distribution sécurisée du réseau d’eau potable et d’assurer une vente d’eau supplémentaire à la Ferté Bernard.

Par contre, le SIAEP du PERCHE SARTHOIS a besoin d’un outil d’aide à la décision pour connaître les insuffisances de son réseau de distribution d’eau potable et de s’assurer de la bonne répartition de ses productions d’eau potable pour répondre aux besoins de ses abonnés et de son potentiel pour assurer et sécuriser ses exportations auprès de la Ville de la Ferté Bernard.

De plus la problématique générale de la collectivité est d’assurer en tout point de son réseau la desserte en eau potable de qualité et sécurisée et aussi particulièrement au niveau des zones urbaines.

Ce schéma directeur permettra de définir un programme pluriannuel d'investissements intégrant les travaux de renforcement des ressources en eau potable et qui devront être cohérents avec le développement urbain programmé par les communes adhérentes.

Les objectifs de cette étude seront donc :

- Examiné la compatibilité des infrastructures actuelles (ressources en eau, réservoirs et réseaux) avec les demandes d’interconnexion et de secours et définir une stratégie ;

- Déterminer les modalités d'alimentation en eau potable des zones sollicitant une vente d’eau du SIAEP du PERCHE SARTHOIS ;

- Définir les moyens à mettre en œuvre pour améliorer le rendement des réseaux d’eau potable aux nœuds stratégiques ;

- Établir un programme de travaux cohérent et compatible avec les moyens des collectivités concernées.

Cette étude sera donc réalisée en 4 phases dont seule la phase 1 fait l’objet de ce rapport.
2 PRESENTATION DE LA ZONE D’ETUDE

2.1 LOCALISATION

Le SIAEP du Perche Sarthois se situe dans le département de la Sarthe (72) regroupant 6 communes.

![SIAEP du Perche Sarthois](image)

Figures 1 et 2 : Localisation du SIAEP du Perche Sarthois
Le SIAEP du Perche Sarthois regroupe les communes de :

- Avezé ;
- Souvigné sur Même ;
- Préval ;
- La Chapelle du Bois ;
- Dehault ;
- Nogent le Bernard.

Le SIAEP dispose d’une interconnexion d’achat et vente d’eau avec la Commune de la Ferté Bernard.
L’interconnexion au niveau de la vente d’eau se situe sur la RD n° 2 (Proche de la commune de la Ferté Bernard)
L’interconnexion au niveau de l’achat d’eau se situe au niveau de la commune d’Avezé.

Une interconnexion, située au niveau de la Commune Saint Cosme en Vairais permet au SIAEP de vendre de l’eau au SIAEP du Vairais.

2.2 DEMOGRAPHIE

D’après les sources recensements de l’INSEE, la population totale alimentée en eau au niveau du SIAEP du Perche Sarthoise est de 3 786 en 2010

<table>
<thead>
<tr>
<th>Communes</th>
<th>Surface (ha)</th>
<th>Nombre d’Habitant</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Chapelle du Bois</td>
<td>1 653</td>
<td>908</td>
</tr>
<tr>
<td>Préval</td>
<td>763</td>
<td>660</td>
</tr>
<tr>
<td>Souvigné sur Même</td>
<td>628</td>
<td>186</td>
</tr>
<tr>
<td>Avezé</td>
<td>2 000</td>
<td>778</td>
</tr>
<tr>
<td>Dehault</td>
<td>559</td>
<td>291</td>
</tr>
<tr>
<td>Nogent le Bernard</td>
<td>3 023</td>
<td>963</td>
</tr>
<tr>
<td>Total</td>
<td>3 786</td>
<td></td>
</tr>
</tbody>
</table>
3 PRESENTATION DES RESSOURCES ACTUELLES

3.1 PRESENTATION GENERALE

L’eau qui alimente l’ensemble du SIAEP du Perche Sarthois provient de 4 forages situés sur les communes de Saint-Germain de la Coudre (61) et Souvigné sur Même et de Sources implantées sur la Commune de Nogent le Bernard.

3.2 FORAGE DU GEOLET

3.2.1 DESCRIPTION

Le site du forage du Géolet se situe dans le département de l'Orne (61) à 800 m environ au Nord de la Tannerie, également en rive gauche de la Même, sur la commune de Saint-Germain-de-la-Coudre (Parcelle G n°156).
Le forage d’une profondeur de 179 m a été réalisé en 2003.
Il comporte un forage d'exploitation, F1 (Altitude + 105 m), captant les calcaires de l'Oxyfordien.

Figures 3 et 4 : Forage du Géolet

Caractéristiques électromécaniques :

<table>
<thead>
<tr>
<th></th>
<th>Théorique</th>
<th>15/02/2012</th>
<th>27/09/12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débit (m³/h)</td>
<td>90</td>
<td>85</td>
<td>83</td>
</tr>
<tr>
<td>HMT (mCe)</td>
<td>52</td>
<td>58.8</td>
<td>62.12</td>
</tr>
<tr>
<td>Puissance Utile (kW)</td>
<td>22</td>
<td>24.6</td>
<td>24.1</td>
</tr>
</tbody>
</table>

Caractéristiques du débitmètre :
Diamètre : DN 100 mm
Volume mesuré : 182 797 m³ en 7 mois
3.2.2 **COUPE LITHOLOGIQUE DU FORAGE**

Il présente une profondeur de 179 m

- 0 à 9 m : Argile à Silex solifluées
- 9,00 à 20,00 m : Marne grise et calcaire blanc dur (Craie de Théligny)
- 20,00, à 61,00 m : Marne grise et calcaires gris (Marnes de Ballon)
- 61,00 à 81,00 m : Marne gris noir glauconieuse (Marne à O. vesiculosa)
- 81,00 à 94,00 m : Alternance calcaire gris et marne grise (faciès astartien)
- 94,00 à 107,00 m : Calcaire miel
- 107,00 à 116,50 m : Calcaire et marne noire (faciès astartien)
- 116,50 à 118,50 m : Silts (Sables de Cherré)
- 118,50 à 129,50 m : Calcaire oolithique gris clair (Corallien)
- 129,50 à 154,00 m : Calcaire fin oolithique clair (Corallien)
- 154,00 à 169,50 m : Calcaire brun ou gris et marnes
- 169,50 à 179 m : Marnes noires
COUPE TECHNIQUE

Avant puits et dalle béton avec regard à 0.50 m/sol
0 à 122 m : Tubage plein acier E:24/2 Ø 370 mm avec cimentation annulaire
122 à 154 m : Trou nu Ø 12"
154 à 179 m : Remblai

Niveau statique : 6.70 m le 21 mai 2003
Le sondage de reconnaissance S1 (Profondeur 179 m) réalisé initialement se trouve à 7 m du forage d'exploitation F1
3.2.4 ÉVOLUTION DU NIVEAU D’EAU EN NOVEMBRE 2012

Au cours du mois de novembre 2012, les variations du niveau d'eau du forage sont assez constantes avec un maximum de 34.25 m et un minimum de 5.98 m.
Sur l'ensemble du mois le niveau moyen d'eau est de 18.32 m.

Graphique 1: Evolution du niveau d'eau du forage
3.3 **FORAGE DE LA TANNERIE (F1, F2 ET F3)**

3.3.1 **DESCRIPTION**

Le site des forages de la Tannerie, sur le versant en rive gauche de la rivière la Même, est situé sur le territoire de la Sarthe (72) au niveau de la commune de Souvigné-sur-Même (Parcelles A n°136-397-398) à 1,5 km environ au Nord du bourg et à 700 m à l’Est de la commune de Préval. L’accès s’effectue par la RD 59.

Il comporte 3 ouvrages d’exploitation :

- Forage F1 (Altitude + 98 m) et F3 (Altitude + 117m) captant la craie du Cénomanien.
- Forage F2 (Altitude + 98 m) captant les calcaires de l’Oxfordien.

![Figures 6 et 7 : Forage F1 et F2](image)

Caractéristiques électromécaniques :

- **Tannerie F1** :

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Théorique</th>
<th>13/02/2012</th>
<th>25/09/12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débit (m³/h)</td>
<td>30</td>
<td>13.7</td>
<td>14.2</td>
</tr>
<tr>
<td>HMT (mCe)</td>
<td>46</td>
<td>24.32</td>
<td>24.72</td>
</tr>
<tr>
<td>Puissance Utile (kW)</td>
<td>5.5</td>
<td>5.1</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Caractéristiques du débitmètre :
- Diamètre : DN 100 mm
- Volume mesurée : 1 886m³ en 7 mois
• Tannerie F2:

<table>
<thead>
<tr>
<th></th>
<th>Théorique</th>
<th>13/02/2012</th>
<th>25/09/12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débit (m³/h)</td>
<td></td>
<td>23.1</td>
<td>24.6</td>
</tr>
<tr>
<td>HMT (mCe)</td>
<td></td>
<td>17.11</td>
<td>18.09</td>
</tr>
<tr>
<td>Puissance Utile (kW)</td>
<td></td>
<td>5.7</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Caractéristiques du compteur :
Diamètre : DN 100mm
Volume mesurée : 40 275 m³ en 7 mois

• Tannerie F3:

<table>
<thead>
<tr>
<th></th>
<th>Théorique</th>
<th>13/02/2012</th>
<th>25/09/12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débit (m³/h)</td>
<td>NC</td>
<td>49</td>
<td>46.5</td>
</tr>
<tr>
<td>HMT (mCe)</td>
<td>NC</td>
<td>28.09</td>
<td>28.55</td>
</tr>
<tr>
<td>Puissance Utile (kW)</td>
<td></td>
<td>10.2</td>
<td>10.4</td>
</tr>
</tbody>
</table>

Caractéristiques du compteur :
Diamètre : DN 100 mm
Volume mesurée : 72 635 m³ en 7 mois

3.3.2 **COUPE LITHOLOGIQUE DES FORAGES**

Tannerie F1 :

Profondeur : 190 m
Réalisation : 1976

- 0 à 5,00 m : Colluvions argileuses
- 5,00 m à 16,00 m : craie blanc jaunâtre
- 16,00 à 66,00 m : Craie glauconieuse
- 66,00 à 75,00 m : Glauconie à O.vesiculosa
- 75,00 à 117,00 m : Calcaire à grain fin
- 117,00 à 150,00 m : Calcaire fin et calcaire oolithique
- 150,00 à 159,00 m : Calcaire argileux
- 159,00 à 161,00 : Sable marneux
- 161,00 à 190,00 m : Marnes à bancs indurés

Tannerie F2 :

Figure 9 : Forage F2

Profondeur : 20 m
Réalisation : 1991

- 0 à 11,50 m : Colluvion argilo-sableuses
- 11,50 à 19,00 m : Tuffeau et calcaire à la base (Craie de Théligny)
- 19,00 à 20,00 m : Marne grise

Tannerie F3 :

Figures 10 et 11 : Forage F3
Profondeur : 38 m
Réalisation : 1993

- 0 à 4,00 m : Sable argileux fin roux minacé
- 4,00 à 9,50 m : Argile silteuse minacé
- 9,50 à 18,00 m : Argile beige minacée avec blanc calcaire beige marneux
- 18,00 à 28,00 m : Marne gris beige plastique puis silteuse avec glauconie
- 28,00 à 30,00 m : Marne et calcaire gris glauconieux
- 30,00 à 38,00 m : Perte totale

Tannerie F1 :

Figure 12 : Coupe du Forage
Tannerie F2 :

Figure 13 : Coupe du Forage
Figure 14: Coupe du Forage
3.3.3 **COUPE TECHNIQUE DES FORAGES**

Tannerie F1 :

Dalle béton surélevée de 0.50 m par rapport au sol avec trappe de visite
0 à 30,50 m : Tubage plein acier Ø 320 mm
0 à 60,00 m : Tubage plein PVC Ø 232 mm avec cimentation annulaire
50,00 à 81,00 m : Tube plein Ø 180 mm
81,00 à 150,00 : Tubage crépiné Ø 180 mm (Massif gravier 10/20)
150,00 à 190,00 m : Remblai

Niveau statique à 3,35 m le 23 mai 1993
Figure 15 : Coupe du Forage
Tannerie F2 :

Dalle béton surélevée de 0.50 m par rapport au sol avec trappe de visite
0 à 12,00 m : Tube acier Ø 405 mm avec cimentation annulaire
10,00 à 18,60 m : Crépine PVC Ø 230 mm
18,60 à 20,00 m : Remblai

Niveau statique à 10,98 m le 24 janvier 1991

Figure 16 : Coupe du Forage
Tannerie F3 :

Dalle béton surélevée de 0.50 m par rapport au sol avec trappe de visite
0 à 28,00m : Tubage plein avec cimentation annulaire
28,00 à 38,00 m : Trou nu Ø 311 mm

Niveau Statique à 26.55 m le 1 avril 1993.

Figure 17 : Coupe du Forage
3.3.4 **ÉVOLUTION DU NIVEAU D’EAU EN NOVEMBRE 2012**

Tannerie F1 :

![Graphique 2 : Evolution du niveau d'eau du forage](image)

Au cours du mois de novembre 2012, les variations du niveau d'eau du forage sont assez constantes avec un maximum de 27.98 m et un minimum de 14.18 m. Sur l’ensemble du mois le niveau moyen d’eau est de 20.23 m.

Schéma Directeur d’Alimentation en Eau Potable su SIAEP du Perche Sarthois
Bureau Intégrale Environnement - 2013
Page 22/77
Tannerie F2 :

Au cours du mois de novembre 2012, les variations du niveau d'eau du forage sont assez constantes avec un maximum de 13.62 m et un minimum de 11.12 m.
Sur l'ensemble du mois le niveau moyen d'eau est de 11.81 m
Au cours du mois de novembre 2012, les variations du niveau d'eau du forage sont assez constantes avec un maximum de 26.88 m et un minimum de 26.21 m. Sur l'ensemble du mois le niveau moyen d'eau est de 26.88 m.

A partir du 27 novembre, le niveau d'eau du forage F3 a diminué de 0.2 m par rapport aux jours précédents. Ce phénomène est observable début décembre.
3.4 Bilan des Ressources

3.4.1 Données Initiales

<table>
<thead>
<tr>
<th>Ressource</th>
<th>Commune</th>
<th>Profondeur</th>
<th>Aquifère</th>
<th>Débit moyen (^1) (m³/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forage du Géolet*</td>
<td>Saint Germain de la Coudre (61)</td>
<td>150 m</td>
<td>Calcaires Coralliens</td>
<td>78 m³/h*</td>
</tr>
<tr>
<td>Forage de la Tannerie F1</td>
<td>Souvigné-sur-Même</td>
<td>150 m</td>
<td>Calcaires Coralliens</td>
<td>15 m³/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Débit limité Présence de fines</td>
</tr>
<tr>
<td>Forage de la Tannerie F2</td>
<td>Souvigné-sur-Même</td>
<td>50 m</td>
<td>Tuffeau</td>
<td>26 m³/h</td>
</tr>
<tr>
<td>Forage de la Tannerie F3</td>
<td>Souvigné-sur-Même</td>
<td>50 m</td>
<td>Tuffeau</td>
<td>47 m³/h</td>
</tr>
<tr>
<td>Sources des Hautes Fontaines</td>
<td>Nogent le Bernard</td>
<td></td>
<td></td>
<td>7 m³/h</td>
</tr>
</tbody>
</table>

* Débit maximum journalier au niveau de la DUP : 1800 m³/j

\(^1\): Débits moyens obtenu sur l’année 2012
3.4.2 Fonctionnement des différents forages du Syndicat

- Forage du Géolet :

Le graphique ci-dessous illustre le temps de fonctionnement des pompes ainsi que les volumes prélevés sur l’année 2012.

Graphique 5 : Fonctionnement et volume prélevé du forage du Géolet

Remarque : En Août 2012, une erreur sur la mesure du volume de prélèvement est survenue. En effet le temps de fonctionnement est important cependant le volume prélevé est faible.
- Forage de la Tannerie F1 :

Le graphique ci-dessous illustre le temps de fonctionnement des pompes ainsi que les volumes prélevés sur l’année 2012.

Graphique 6 : Fonctionnement et volume prélevé du forage de la Tannerie F1

Remarque : Le Forage F1 n’a fonctionné que 5 mois sur l’ensemble de l’année
Forage de la Tannerie F2 :

Le graphique ci-dessous illustre le temps de fonctionnement des pompes ainsi que les volumes prélevés sur l’année 2012.

Remarque : En Août 2012, une erreur sur la mesure du volume de prélèvement est survenue. En effet les pompes ont fonctionnées 222 h mais aucun volume prélevé n’a été mesuré.
Forage de la Tannerie F3 :

Le graphique ci-dessous illustre le temps de fonctionnement des pompes ainsi que les volumes prélevés sur l’année 2012.

Graphique 8 : Fonctionnement et volume prélevé du forage de la Tannerie F3

Remarque : En Août 2012, une erreur sur la mesure du volume de prélèvement est survenue. En effet les pompes ont fonctionnées 203 h mais aucun volume prélevé n’a été mesuré.
3.4.3 **DONNEES D’EXPLOITATION DU SYNDICAT EN 2012**

- **Forage du Géolet :**

<table>
<thead>
<tr>
<th>Valeur</th>
<th>Temps de fonctionnement (en h)</th>
<th>Volume Prélevé (en m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annuelle (2012)</td>
<td>3 386</td>
<td>248 224</td>
</tr>
<tr>
<td>Moyenne (par mois)</td>
<td>282</td>
<td>20 685</td>
</tr>
<tr>
<td>Maximale</td>
<td>322</td>
<td>23 997</td>
</tr>
<tr>
<td>Minimale</td>
<td>149</td>
<td>9 455</td>
</tr>
</tbody>
</table>

- **Forage de la Tannerie F1 :**

<table>
<thead>
<tr>
<th>Valeur</th>
<th>Temps de fonctionnement (en h)</th>
<th>Volume Prélevé (en m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annuelle (2012)</td>
<td>1 305</td>
<td>20 100</td>
</tr>
<tr>
<td>Moyenne (par mois)</td>
<td>109</td>
<td>1 675</td>
</tr>
<tr>
<td>Maximale</td>
<td>267</td>
<td>4 236</td>
</tr>
<tr>
<td>Minimale</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Forage de la Tannerie F2 :**

<table>
<thead>
<tr>
<th>Valeur</th>
<th>Temps de fonctionnement (en h)</th>
<th>Volume Prélevé (en m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annuelle (2012)</td>
<td>2 155</td>
<td>49 802</td>
</tr>
<tr>
<td>Moyenne (par mois)</td>
<td>180</td>
<td>4 527</td>
</tr>
<tr>
<td>Maximale</td>
<td>221</td>
<td>5 403</td>
</tr>
<tr>
<td>Minimale</td>
<td>149</td>
<td>3863</td>
</tr>
</tbody>
</table>
- Forage de la Tannerie F3 :

<table>
<thead>
<tr>
<th>Valeur</th>
<th>Temps de fonctionnement (en h)</th>
<th>Volume Prélevé (en m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annuelle (2012)</td>
<td>2 136</td>
<td>90 027</td>
</tr>
<tr>
<td>Moyenne (par mois)</td>
<td>178</td>
<td>8 184</td>
</tr>
<tr>
<td>Maximale</td>
<td>218</td>
<td>10 347</td>
</tr>
<tr>
<td>Minimale</td>
<td>149</td>
<td>6 972</td>
</tr>
</tbody>
</table>

- Ensemble des forages du SIAEP du Perche Sarthois :

<table>
<thead>
<tr>
<th>Valeur</th>
<th>Temps de fonctionnement (en h)</th>
<th>Volume Prélevé (en m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annuelle (2012)</td>
<td>8 982</td>
<td>408 153</td>
</tr>
<tr>
<td>Moyenne (par mois)</td>
<td>748</td>
<td>34 013</td>
</tr>
<tr>
<td>Maximale</td>
<td>860</td>
<td>39 747</td>
</tr>
<tr>
<td>Minimale</td>
<td>583</td>
<td>9 455</td>
</tr>
</tbody>
</table>

Durant l’année, le forage de la Tannerie F1 n’a fonctionnée que partiellement (5 mois sur l’année).

De plus des erreurs de mesures de prélèvements ont été observées sur les différents forages (Forage de la Tannerie F2 et F3) en Août 2012.

Du fait de ce problème les résultats obtenus concernant les volumes prélevés sur l’année 2012 sont par conséquent légèrement erronées.

Le volume de prélèvement en 2012 est par conséquent moins important qu’en 2011 (Environ 50 000 m³).
D’autre part le SIAEP du Perche Sarthois étudie la faisabilité de mettre en service un forage existant au lieu-dit de la Filerie sur la Commune de Nogent le Bernard d’un débit potentiel de 20 à 25 m3/h sollicitant les calcaires du Corallien.

Vous trouverez ci-dessous, la coupe lithologique de ce forage existant.
- 7,00 m : Argiles bariolées puis beige-jaunâtre à silex
- 16,00 m : Tuffeau beige marneux, gréseux et glaucon au mur
- 20,00 m : Marne beige-rouille à noire
- 28,00 m : Marne gris-vert pâte à bancs gréseux, quelques graviers
- 32,00 m : Grès et sable gris-vert pâte moyen à fin, glaucon
- 36,00 m : Marne kaki très silteuse et finement sableuse
- 47,00 m : Marne gris vert à gris foncé, rarres bancs calcaire
- 51,00 m : Marne et calcaire gris plus clair, fin
- 79,00 m : Marne gris-foncé léger verdâtre, rares passées gréseuses, traces de graviers de 61 à 68 m.
- 85,00 m : Calcaire gréseux gris clair, glaucon, bioclaste
- 119,00 m : Marne gris foncé légèrement glaucon, plus ou moins silteuse à petit niveaux plus calcaire
- 122,00 m : Calcaire gréseux gris clair, fin, tendre
- 124,00 m : Marne gris foncé légèrement glaucon
- 146,50 m : Marne gris vert foncé très glauconieuse
- 149,50 m : Calcaire gris clair fin, à a passées bioclastiques
- 152,00 m : Calcaire gris clair à grosses oolithes
Figure 18 : Coupe du Forage
4 DESCRIPTION DU SERVICE D’ALIMENTATION EN EAU POTABLE

4.1 DESCRIPTION DU RESEAU

Le réseau d’eau potable du SIAEP du Perche Sarthois, s’étend sur 212 km de canalisations et 22 km de branchements sur les 6 communes.

4.2 DESCRIPTION DES INTERCONNEXION (ACHATS, VENTES, SECOURS)

Actuellement, il existe certaines interconnexions avec les communes et collectivités alentours. Certaines sont utilisées, d’autres ont été abandonnées ou ne sont pas utilisées.

4.2.1 INTERCONNEXION AVEC LA COMMUNE DE LA FERTE BERNARD

Le SIAEP du Perche Sarthois dispose d’une interconnexion d’achat et vente d’eau avec la Commune de la Ferté Bernard.

Cette interconnexion se situe au niveau de la Route départementale (RD n°02)

La convention d’Achat/Vente entre la Commune et le Syndicat a une durée de 10 ans et arrive à échéance en 2014.

Le tableau ci-dessous indique les volumes vendus à la Commune de la Ferté Bernard

<table>
<thead>
<tr>
<th>Année</th>
<th>Vente au niveau de la Ferte Bernard</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>181 451 m³</td>
</tr>
<tr>
<td>2009</td>
<td>202 576 m³</td>
</tr>
<tr>
<td>2010</td>
<td>202 198 m³</td>
</tr>
<tr>
<td>2011</td>
<td>218 568 m³</td>
</tr>
</tbody>
</table>

Le syndicat achète environ 3000 m³ annuellement pour l’alimentation d’une partie des abonnés d’Avezé. Cependant aucune convention d’achat d’eau n’est signée.

4.2.2 INTERCONNEXION AVEC LE SIAEP DU VAIRAIS

Une interconnexion, située entre les Communes de Nogent le Bernard et Rouperoux le Coquet permet au SIAEP d’alimenter le SIAEP du Vairais.

Actuellement la vente est de l’ordre de 6100 m³ par an.
4.3 INVENTAIRE DES EQUIPEMENTS

4.3.1 RESERVOIRS

Pour assurer sa distribution en eau potable le SIAEP dispose de 5 réservoirs d’une capacité totale de 2800 m³ :

- Bâche de reprise de la Station de la Tannerie :

Caractéristiques du réservoir :

Type : Semi enterré
Capacité : 700 m³
Côte Radier : 96.46 m
Côte Crépine : 96.66 m
Côte Trop plein : 103.91 m
Marnage : 7.2 m

![Figure 19: Bâche de reprise de la Tannerie](image)

Remarque : L’état général de la bâche est bon, aucune trace de fuites apparente
Réservoir du Poirier Jaunes :

Caractéristiques du réservoir :

Type : Château d’eau
Capacité : 900 m3
Côte Radier : 197.43 m
Côte Crépine : 197.93 m
Côte Trop plein : 206.43 m
Marnage : 8.2 m

Figures 20 et 21 : Réservoir du Poirier Jaunes

Caractéristiques du débitmètre :

Diamètre : DN 100 mm
Volume mesuré : 209 804 m3 en 7 mois

Caractéristiques de l’Anti-Bélier :

Année : 2007
Volume : 750 L
Pression de service : 16 bar
Pression d’épreuve : 22.8 bar

Remarque : L’état général du réservoir est bon, aucune trace de fuites apparente
- Réservoir de l’Orgerie :

Caractéristiques du réservoir :

Type : Semi enterré
Capacité : 300 m³
Côte Radier : 166.49 m
Côte Crépine : 166.57 m
Côte Trop plein : 177.24 m
Marnage : 9.4 m

![Réservoir de l’Orgerie](image)

Figures 22 et 23 : Réservoir de l’Orgerie

Remarques : Le réservoir de l’Orgerie présente des traces de fuites et son état est dégradé. La station fonctionne correctement, cependant elle est en mauvaise état.

Caractéristiques du débitmètre :

Diamètre : DN 65 mm
Volume mesuré : 68 315 m³ en 7 mois

Caractéristiques de l’Anti-Bélier :

Année : 2007
Volume : 300 L
Pression de service : 16 bar
Pression d’épreuve : 22.8 bar
Réservoir de l’Avezé :

Caractéristiques du réservoir :

Type : Semi enterré
Capacité : 300 m3
Côte Radier : 112.86 m
Côte Crépine : 113.86 m
Côte Trop plein : 116.86 m
Marnage : 2.77 m

Figures 24 et 25 : Réservoir de l’Avezé

Remarque : Le réservoir de l’Avezé présente des traces de fuites et son état est dégradé.
- Réservoir des Jausetteries :

*Caractéristiques du réservoir :

Type : Semi enterré
Capacité : $2 \times 200 \text{ m}^3$
Côte Radier : 156.81
Côte Crêpine : 157.31 m
Côte Trop plein : 160.56 m
Marnage : 3.75 m

Figures 26 et 27 : Réservoir des Jausetteries

Remarque : Le réservoir des Jausetteries présente des traces de fuites et son état est dégradé.
Réservoir des Sources des Hautes Fontaines :

Caractéristiques du réservoir :

Type : Semi enterré
Capacité : 200 m3
Côte Radier : 93.86 m
Côte Crépine : 94.36 m
Côte Trop plein : 96.71 m
Marnage : 2.85 m

Figures 28 à 30 : Réservoir des Sources des Hautes Fontaines
4.3.2 ÉQUIPEMENTS ÉLECTROMÉCANIQUES

- Caractéristiques électromécaniques Reprise 1 :

<table>
<thead>
<tr>
<th></th>
<th>Théorique</th>
<th>16/02/2012</th>
<th>03/10/12*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débit (m3/h)</td>
<td>17</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>HMT (mCe)</td>
<td>90</td>
<td>75.96</td>
<td>69.84</td>
</tr>
<tr>
<td>Puissance Utile (kW)</td>
<td>7.5</td>
<td>6.99</td>
<td>4.88</td>
</tr>
</tbody>
</table>

* Problème hydraulique observé lors du contrôle

- Caractéristiques électromécaniques Reprise 2 :

<table>
<thead>
<tr>
<th></th>
<th>Théorique</th>
<th>16/02/2012</th>
<th>03/10/12*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débit (m3/h)</td>
<td>17</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>HMT (mCe)</td>
<td>80</td>
<td>76</td>
<td>75.92</td>
</tr>
<tr>
<td>Puissance Utile (kW)</td>
<td>7.5</td>
<td>7.3</td>
<td>7.2</td>
</tr>
</tbody>
</table>

Remarque :
L’état général du réservoir des Sources des Hautes est dégradé.
Les appareils de mesures sont anciens et en mauvais état.

- Tableau récapitulatif :

<table>
<thead>
<tr>
<th>Stockage</th>
<th>Localisation</th>
<th>Volume de stockage m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bâche de reprise de la Station de la Tannerie</td>
<td>Souvigné sur Même</td>
<td>700</td>
</tr>
<tr>
<td>Réservoir sur tour du Poirier Jaune</td>
<td>Chapelle du Bois</td>
<td>900</td>
</tr>
<tr>
<td>Réservoir au sol de l’Orgerie</td>
<td>Souvigné sur Même</td>
<td>300</td>
</tr>
<tr>
<td>Réservoir au sol de la d’Avezé</td>
<td>Avezé</td>
<td>300</td>
</tr>
<tr>
<td>Réservoir des Jausetteries</td>
<td>Nogent le Bernard</td>
<td>2 × 200</td>
</tr>
<tr>
<td>Réservoir des Sources de Hautes Fontaines</td>
<td>Nogent le Bernard</td>
<td>200</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>2 800</td>
</tr>
</tbody>
</table>
4.3.3 **ÉQUIPEMENTS HYDRAULIQUE PARTICULIER**

Au sein de l’usine de la Tannerie, il y a la présence de groupe de pompe permettant d’alimenter les Réseaux de l’Orgerie et du Poirier Jaunes.
Vous trouverez ci-dessous les caractéristiques électromécaniques de ces groupes de reprise.

- Stations de reprise : Direction L’Orgerie

Il y a la présence de 2 pompes permettant d’alimenter le réservoir de l’Orgerie.
Elles sont installées en parallèle permettant ainsi d’effectuer une alternance entre les 2 pompes.

Figures 31 et 32 : Station de reprise du pour alimentation du réservoir de l’Orgerie

Caractéristiques électromécaniques Reprise 1 :

<table>
<thead>
<tr>
<th></th>
<th>Théorique</th>
<th>13/02/2012</th>
<th>25/09/12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débit (m3/h)</td>
<td>40</td>
<td>42</td>
<td>43</td>
</tr>
<tr>
<td>HMT (mCe)</td>
<td>90</td>
<td>81.05</td>
<td>82.87</td>
</tr>
<tr>
<td>Puissance Utile (kW)</td>
<td>18.5</td>
<td>18</td>
<td>18.3</td>
</tr>
</tbody>
</table>
Caractéristiques électromécaniques Reprise 2 :

<table>
<thead>
<tr>
<th></th>
<th>Théorique</th>
<th>13/02/2012</th>
<th>25/09/12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débit (m³/h)</td>
<td>40</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>HMT (mCe)</td>
<td>90</td>
<td>82.62</td>
<td>83.22</td>
</tr>
<tr>
<td>Puissance Utile (kW)</td>
<td>18.5</td>
<td>18.4</td>
<td>18.3</td>
</tr>
</tbody>
</table>

- Stations de reprise : Direction Poirier Jaune

Il y a la présence de 2 pompes permettant d’alimenter le réservoir du Poirier Jaune. Elles sont installées en parallèle permettant ainsi d’effectuer une alternance entre les 2 pompes.

Figures 33 et 34 : Station de reprise pour alimentation du réservoir du Poirier Jaune

Caractéristiques électromécaniques Reprise 1 :

<table>
<thead>
<tr>
<th></th>
<th>Théorique</th>
<th>13/02/2012</th>
<th>25/09/12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débit (m³/h)</td>
<td>140</td>
<td>151</td>
<td>151</td>
</tr>
<tr>
<td>HMT (mCe)</td>
<td>146</td>
<td>138.2</td>
<td>138.15</td>
</tr>
<tr>
<td>Puissance Utile (kW)</td>
<td>90</td>
<td>83.2</td>
<td>83.2</td>
</tr>
</tbody>
</table>
Caractéristiques électromécaniques Reprise 2 :

<table>
<thead>
<tr>
<th></th>
<th>Théorique</th>
<th>13/02/2012</th>
<th>25/09/12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débit (m3/h)</td>
<td>140</td>
<td>140</td>
<td>141</td>
</tr>
<tr>
<td>HMT (mCe)</td>
<td>146</td>
<td>132.3</td>
<td>133.44</td>
</tr>
<tr>
<td>Puissance Utile (kW)</td>
<td>90</td>
<td>82.3</td>
<td>84.1</td>
</tr>
</tbody>
</table>

Outre ses 5 ressources et ses 5 réservoirs, le SIAEP de Perche Sarthois dispose également d'une installation de surpressions et d'une usine de traitement (démanganisation et déferrisation biologique) :

- Surpression située à l’Avezé de 12 m³/h :

Il y a la présence de 2 pompes permettant d’effectuer une surpression du réseau au niveau du réservoir de l’Avezé. Cette installation permet de garantir une pression sur une partie de la commune de l’Avezé. Les pompes sont installées en parallèle permettant ainsi d’effectuer une alternance.

Figures 35 et 36 : Station de surpression de l’Avezé

Caractéristiques électromécaniques surpression n°1 :

<table>
<thead>
<tr>
<th></th>
<th>Théorique</th>
<th>05/03/2012</th>
<th>03/10/12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débit (m3/h)</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMT (mCe)</td>
<td>100</td>
<td>92 - 103</td>
<td>92 – 103</td>
</tr>
<tr>
<td>Puissance Utile (kW)</td>
<td>7.5</td>
<td>7.2</td>
<td>7</td>
</tr>
</tbody>
</table>
Caractéristiques électromécaniques surpression n°2 :

<table>
<thead>
<tr>
<th></th>
<th>Théorique</th>
<th>05/03/2012</th>
<th>03/10/12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débit (m3/h)</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMT (mCe)</td>
<td>100</td>
<td>92 - 103</td>
<td>92 – 103</td>
</tr>
<tr>
<td>Puissance Utile (kW)</td>
<td>7.5</td>
<td>7.4</td>
<td>7.3</td>
</tr>
</tbody>
</table>

Remarques :
La station fonctionne correctement, cependant il a été constaté un début d'usure au niveau des pompes.
Présence d'humidité dans le local.
• 1 une station de traitement de démanganisation et de déferrisation par voie biologique pour une capacité de 170 m³/h.

Figures 37 à 38 : Station de traitement de démanganisation et déferrisation.
4.4 **FONCTIONNEMENT DU RESEAU**

4.4.1 **ASSERVISSEMENT ET CONSIGNES DE REGULATION**

4.4.2 **SECTORISATION DU SYNDICAT**

Ce qui est marquant sur ce Syndicat est l’absence de suivi du fonctionnement du réseau en temps réel.
En effet, seul les compteurs de sortie de forage sont télégérés et enregistrer sur un SOFREL.

Il est indispensable de pouvoir suivre en temps réel le fonctionnement du réseau du Syndicat pour deux raisons principales :

- Améliorer le rendement
- Assurer une meilleure réactivité en cas de fuite importante

Actuellement l’absence de sectorisation a pour conséquence de ne pas permettre l’amélioration du rendement du réseau.
Cependant le réseau du Syndicat est considéré comme bon.
De plus les mesures d’urgence nécessaires lors de casse ou de fuite importante ne sont hélas pas prises dans les délais.

Pour les besoins de l’étude, et dans le cadre de la campagne de mesures à réaliser sur le Syndicat, nous proposerons une sectorisation du SIAEP en phase 2 du schéma directeur.

La sectorisation mise en place pour la future campagne de mesures sera établie dans un souci d’économie des investissements.
Figure 39 : Plan de réseau du SIAEP du Perche Sarthois
4.4.3 Branchements Plombs

4.4.4 Securisation

Toutes les installations (station de pompage, réservoirs, surpresseur, usine) sont clôturées et fermées à clefs. Cependant les clôtures sur certains sites ne sont pas à hauteur réglementaire. En effet les clôtures des différents réservoirs hormis celui situé à la Tannerie sont à des hauteurs inférieures à 2.00 m, qui est la hauteur réglementaire.

Des contacts au niveau des portes des locaux et trappes d'accès à l'eau sont systématiquement installés et raccordés à une alarme.

Les intrusions dans les puits ou les locaux donnant un accès direct à l’eau potable engendrent des coupures de distribution (arrêt des pompages et refoulement).
5 ÉTUDE DES CONSOMMATIONS ET DES BESOINS ACTUELS

5.1 ÉVOLUTION DE LA POPULATION

5.1.1 ÉVOLUTIONS PASSEES

<table>
<thead>
<tr>
<th>Communes</th>
<th>Population (hab)</th>
<th>Taux de croissance annuel (%/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td>La chapelle du bois</td>
<td>645</td>
<td>806</td>
</tr>
<tr>
<td>Préval</td>
<td>581</td>
<td>580</td>
</tr>
<tr>
<td>Souvigné-sur-Même</td>
<td>180</td>
<td>173</td>
</tr>
<tr>
<td>Avezé</td>
<td>559</td>
<td>654</td>
</tr>
<tr>
<td>Déhault</td>
<td>231</td>
<td>214</td>
</tr>
<tr>
<td>Nogent le Bernard</td>
<td>809</td>
<td>873</td>
</tr>
<tr>
<td>SIAEP du Perche Sarthois</td>
<td>3005</td>
<td>3300</td>
</tr>
</tbody>
</table>

On constate des évolutions modérées allant de 0.2 % à 1.4 % par an entre 1990 et 2010.

La population du SIAEP du Perche Sarthois est passée de 3005 à 3786 habitants entre 1990 et 2010, soit une augmentation de 1.0% par an.
5.1.2 **Évolutions Futures**

On considère une hypothèse d’évolution de la population où le taux de croissance entre 2010 et 2028 est égal au taux de croissance constaté entre 1990 et 2010.

On détermine ainsi les populations projetées pour 2028 (15 ans) dans le cas d’une évolution linéaire.

<table>
<thead>
<tr>
<th>Population (hab)</th>
<th>Taux de croissance annuel (%/an)</th>
<th>Population projetée en 2028 (hab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>1990 / 2010</td>
<td>1176</td>
</tr>
<tr>
<td>La chapelle du bois</td>
<td>908</td>
<td>1176</td>
</tr>
<tr>
<td>Préval</td>
<td>660</td>
<td>855</td>
</tr>
<tr>
<td>Souvigné-sur-Même</td>
<td>186</td>
<td>241</td>
</tr>
<tr>
<td>Avezé</td>
<td>778</td>
<td>1 008</td>
</tr>
<tr>
<td>Dehault</td>
<td>291</td>
<td>377</td>
</tr>
<tr>
<td>Nogent le Bernard</td>
<td>963</td>
<td>1 247</td>
</tr>
<tr>
<td>SIAEP du Perche Sarthois</td>
<td>3 786</td>
<td>4 904</td>
</tr>
</tbody>
</table>

Pour la suite de notre étude, le taux de croissance moyen du SIAEP du Perche Sarthois (1 %) sera retenu.

5.2 **Besoins et Rendement**

5.2.1 **Évolutions Passées**

En étudiant les Rapports Annuel des années précédentes, nous pouvons analyser l’évolution du rendement du réseau du SIAEP du Perche Sarthois et ainsi nous faire une idée de son état global.

Volumes mis à disposition par le Syndicat

Les volumes introduits correspondent aux volumes produits et aux volumes achetés à l’extérieur.

<table>
<thead>
<tr>
<th>Forages de la Tannerie (m³)</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources (m³)</td>
<td>49 154</td>
<td>40 392</td>
<td>34 363</td>
<td>34 141</td>
<td>32 547</td>
</tr>
<tr>
<td>Achat (m³)</td>
<td>3 442</td>
<td>3 759</td>
<td>4 591</td>
<td>3 161</td>
<td>3 073</td>
</tr>
<tr>
<td>Besoin Annuel (m³)</td>
<td>516 317</td>
<td>507 348</td>
<td>524 796</td>
<td>509 869</td>
<td>512 129</td>
</tr>
</tbody>
</table>
Volumes distribués par le Syndicat

Les volumes distribués correspondent aux volumes vendus à l’extérieur (Ferté Bernard) et aux volumes consommés par les abonnés.

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vente à l’extérieur (m³)</td>
<td>194 500</td>
<td>181 451</td>
<td>202 576</td>
<td>202 198</td>
<td>218 568</td>
</tr>
<tr>
<td>Volumes Abonnés (m³)</td>
<td>246 472</td>
<td>284 959</td>
<td>249 857</td>
<td>284 645</td>
<td>241 380</td>
</tr>
<tr>
<td>Consommation Annuelle (m³)</td>
<td>440 972</td>
<td>463 410</td>
<td>452 433</td>
<td>486 843</td>
<td>459 948</td>
</tr>
</tbody>
</table>

En se basant sur les données de l’INSEE et la consommation domestique en 2010, nous pouvons déterminer la consommation moyenne d’un habitant du SIAEP du Perche Sarthois

Consommation en 2010 : **133 L/j/Hab**

Besoins et rendement primaire

Les besoins correspondent aux volumes distribués.

Pour les années 2007 à 2011, les volumes moyens, consommés et distribués, sont des données qui permettent de calculer le rendement.

Le rendement est considéré comme bon lorsqu’il est supérieur à 80 %

Nous tenons compte dans un premier temps du rendement global qui consiste à effectuer un rapport entre les volumes d’eaux distribués et les volumes mis à disposition.

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Besoin Annuel (m³)</td>
<td>516 317</td>
<td>507 348</td>
<td>524 796</td>
<td>509 869</td>
<td>512 129</td>
</tr>
<tr>
<td>Volumes distribués (m³)</td>
<td>440 972</td>
<td>463 410</td>
<td>452 433</td>
<td>486 843</td>
<td>459 948</td>
</tr>
<tr>
<td>Rendement (%)</td>
<td>85 %</td>
<td>91 %</td>
<td>86 %</td>
<td>95 %</td>
<td>90 %</td>
</tr>
</tbody>
</table>
Dans notre cas, d'importance variations du rendement sont constatées d'une année à l'autre. Ceci est très probablement dû aux relevés faites par le syndicat au moment de la rédaction des différents Rapport Annuel. En effet entre les années 2009 et 2010, le rendement augmente brusquement de 15 points.

Au vue de cette variation importante, la valeur 2010 sera exclue de la moyenne.

Pour la suite de l'étude, le rendement primaire retenu est le rendement moyen des 4 des 5 dernières années (2007, 2008, 2009 et 2011). Sa valeur est de 81 %

Indices linéaires

L'indice linéaire de consommation (ILC) représente le volume consommé journalier rapporté au km de réseau de distribution.

Les petits ILC sont caractéristiques d’un milieu rural (peu de consommation pour de grande longueur de réseaux), tandis que les grands ILC caractérisent un milieu urbain (beaucoup de consommations sur de petites distances).

L'indice linéaire de perte (ILP) représente le volume perdu journalier (différence entre les volumes distribué et consommé), rapporté au km de réseau de distribution.

<table>
<thead>
<tr>
<th>Année</th>
<th>Besoin Annuel (m³)</th>
<th>Consommation Annuelle* (m³)</th>
<th>Linéaire de réseau (km)</th>
<th>ILC (m³/km)</th>
<th>ILP (m³/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>516 317</td>
<td>440 972</td>
<td>212</td>
<td>5.70</td>
<td>0.97</td>
</tr>
<tr>
<td>2008</td>
<td>507 348</td>
<td>463 410</td>
<td>212</td>
<td>5.99</td>
<td>0.57</td>
</tr>
<tr>
<td>2009</td>
<td>524 796</td>
<td>452 433</td>
<td>212</td>
<td>5.85</td>
<td>0.94</td>
</tr>
<tr>
<td>2010</td>
<td>509 869</td>
<td>486 843</td>
<td>212</td>
<td>6.29</td>
<td>0.30</td>
</tr>
<tr>
<td>2011</td>
<td>512 129</td>
<td>459 948</td>
<td>212</td>
<td>5.94</td>
<td>0.67</td>
</tr>
</tbody>
</table>

* Consommation annuelle : volumes consommés + volumes vendus
5.2.2 **ÉVOLUTIONS PASSÉES**

On considère une évolution de la consommation similaire à l’augmentation de la population. Dans le cas de notre hypothèse, nous prévoyons donc une **évolution linéaire de 1.0 %/an** de la consommation, les besoins étant déterminés sur la base du **rendement primaire de 81 %**.

On obtient ainsi les consommations, besoins et rendements suivant :

<table>
<thead>
<tr>
<th></th>
<th>Besoin Annuel (m3)</th>
<th>Consommation Annuelle (m3)</th>
<th>Linéaire de réseau (ml)</th>
<th>ILC (m3/km)</th>
<th>ILP (m3/km)</th>
<th>Rendement*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>512 129</td>
<td>459 948</td>
<td>212</td>
<td>5.94</td>
<td>0.67</td>
<td>82 %</td>
</tr>
<tr>
<td>20281</td>
<td>571 491</td>
<td>504 435</td>
<td>212</td>
<td>6.52</td>
<td>0.87</td>
<td>81 %</td>
</tr>
<tr>
<td>20282</td>
<td>717 923</td>
<td>650 867</td>
<td>212</td>
<td>8.41</td>
<td>0.87</td>
<td>81 %</td>
</tr>
<tr>
<td>20283</td>
<td>900 423</td>
<td>833 367</td>
<td>212</td>
<td>10.77</td>
<td>0.87</td>
<td>81 %</td>
</tr>
</tbody>
</table>

* : Le rendement du réseau des abonnées est de 81 %
1 : Besoins des abonnées du Syndicat en 2028 + vente actuelle à la commune de la Ferté Bernard soit 600 m3/j
2 : Besoins des abonnées du Syndicat en 2028 + vente envisagée à la commune de la Ferté Bernard soit 1 000 m3/j
3 : Besoins des abonnées du Syndicat en 2028 + vente envisagée à la commune de la Ferté Bernard soit 1 500 m3/j

5.2.3 **COEFFICIENT DE POINTE**

Dans le cadre de cette étude, il est nécessaire de faire une hypothèse sur le coefficient de pointe journalière. En effet, les besoins annuels ne sont pas uniformément répartis dans le temps ; on constate des variations saisonnières et journalières résultant de nombreuses causes.

En déterminant le besoin journalier de pointe c’est-à-dire le besoin le plus élevé sur une journée, on s’assure de pouvoir fournir à tout moment de l’année la demande.

Il se calcule de la manière suivante :

\[
k = \frac{\text{Besoin du jour de Pointe}}{\text{Besoin du jour moyen}}
\]

Avec :

\[
\text{Besoin de jour moyen} = \frac{\text{Besoin annuel}}{365}
\]
Ce coefficient varie généralement entre 1.2 et 1.8 et peut atteindre des valeurs très importantes dans le cas de population saisonnière très importante.

Pour la suite de notre schéma directeur nous prendrons un coefficient journalier de pointe de 1.6.

Cette valeur pourra être vérifiée lors du lancement de la campagne de mesures (Cf phase 2 du schéma directeur).

5.2.4 **Récapitulatif**

Récapitulatif de l'évolution de la Population et des Besoins.

<table>
<thead>
<tr>
<th>Population (Hab)</th>
<th>Besoin Annuel (m³)</th>
<th>Consommation Annuelle (m³)</th>
<th>Rendement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>3 786</td>
<td>509 869</td>
<td>486 843</td>
</tr>
<tr>
<td>2028¹</td>
<td>4 904</td>
<td>571 491</td>
<td>504 435</td>
</tr>
<tr>
<td>2028²</td>
<td>4 904</td>
<td>717 923</td>
<td>650 867</td>
</tr>
<tr>
<td>2028³</td>
<td>4 904</td>
<td>900 423</td>
<td>833 367</td>
</tr>
</tbody>
</table>

¹: Besoins des abonnées du Syndicat en 2028 + vente actuelle à la commune de la Ferté Bernard soit 600 m³/j
²: Besoins des abonnées du Syndicat en 2028 + vente envisagée à la commune de la Ferté Bernard soit 1 000 m³/j
³: Besoins des abonnées du Syndicat en 2028 + vente envisagée à la commune de la Ferté Bernard soit 1 500 m³/j
6 ANALYSE DE LA QUALITÉ DE L’EAU

6.1 LE CONTROLE SANITAIRE REGLEMENTAIRE

La qualité de l'eau est surveillée au regard du code de la santé publique relatif aux eaux destinées à la consommation humaine : eau brute (forages), mise en distribution (après traitement) et au point de consommation (au robinet du consommateur).

6.1.1 LA RESSOURCE

Des « analyses » regroupent un certain nombre de paramètres, différents types d'analyses (et donc de listes de paramètres pouvant être différents) sont appliquées. La fréquence de contrôle est liée au débit journalier maximum autorisé pour la ressource. Les analyses réalisées sur la ressource en eaux brutes sont de différents types : RP

6.1.2 LA PRODUCTION

De la même manière, des analyses de type P s'appliquent en sortie de traitement (analyses de type P1 en routine et analyses de type P2, complémentaires des analyses P1, permettant pour certains prélèvements d'obtenir un programme d'analyse complet P1 + P2 au point de mise en distribution). La fréquence des contrôles est liée aux débits moyens journaliers relevés sur la station de traitement.

6.1.3 LA DISTRIBUTION

Les analyses sont de type D sur le réseau de distribution (analyses de type D1 en routine et analyses de type D2, complémentaires des analyses D1, permettant pour certains prélèvements d'obtenir un programme d'analyse complet D1+ D2 au robinet normalement utilisés pour la consommation humaine) avec une fréquence de contrôles liée au nombre d'habitants desservis. D'autres types d'analyses ont aussi été réalisés: DIV, B2+C1, B3.
6.2 **DONNEES DU SIAEP DU PERCHE SARTHOIS**

Les analyses seront jointes en Annexe 1

6.2.1 **ANALYSE DE PRODUCTION :**

Captage : Le Géolet
Date Prélèvement : 17/07/2012

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Paramètres</th>
<th>Unités</th>
<th>Valeurs</th>
<th>Normes / Réf qualité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiologiques</td>
<td>Escherichia Coli</td>
<td>UFC/100 mL</td>
<td>< 1</td>
<td>20 000</td>
</tr>
<tr>
<td></td>
<td>Entérocoques</td>
<td>UFC/100 mL</td>
<td>< 1</td>
<td>10 000</td>
</tr>
<tr>
<td>Organoleptiques</td>
<td>Couleur</td>
<td>13</td>
<td>U PrCo</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Turbidité</td>
<td>2.1</td>
<td>NFU</td>
<td></td>
</tr>
<tr>
<td>Chimique (Structure Naturelle)</td>
<td>pH</td>
<td>7.45</td>
<td>Unité pH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conductivité</td>
<td>571</td>
<td>µs/cm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cl</td>
<td>7</td>
<td>mg/L</td>
<td>200*</td>
</tr>
<tr>
<td></td>
<td>SO₄²⁻</td>
<td>44</td>
<td>mg/L</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>TA</td>
<td>0</td>
<td>°F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAC</td>
<td>26.3</td>
<td>°F</td>
<td></td>
</tr>
<tr>
<td>Chimique (substances indésirables)</td>
<td>NH₄⁺</td>
<td>< 0.020</td>
<td>mg/L</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>NO₂⁻</td>
<td>< 0.050</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO₃⁻</td>
<td>< 1</td>
<td>mg/L</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>COT</td>
<td>0.6</td>
<td>mg/L</td>
<td>10</td>
</tr>
</tbody>
</table>

* Référence qualité
6.2.2 **ANALYSE DE DISTRIBUTION :**

Réservoir : Le Poirier Jaune
Date Prélèvement : 19/09/2012

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Paramètres</th>
<th>Unités</th>
<th>Valeurs</th>
<th>Normes / Réf qualité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiologiques</td>
<td>Escherichia Coli</td>
<td>UFC/100 mL</td>
<td><1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Entérocoques</td>
<td>UFC/100 mL</td>
<td><1</td>
<td>0</td>
</tr>
<tr>
<td>Organoleptiques</td>
<td>Couleur</td>
<td>< 5</td>
<td>U PrCo</td>
<td>15*</td>
</tr>
<tr>
<td></td>
<td>Turbidité</td>
<td>0.14</td>
<td>NFU</td>
<td>1.0</td>
</tr>
<tr>
<td>Chimique (Structure Naturelle)</td>
<td>pH</td>
<td>7.35</td>
<td>Unité pH</td>
<td>6.5 – 9.0*</td>
</tr>
<tr>
<td></td>
<td>Conductivité</td>
<td>600</td>
<td>µs/cm</td>
<td>200 – 1100*</td>
</tr>
<tr>
<td></td>
<td>Cl⁻</td>
<td>13</td>
<td>mg/L</td>
<td>250*</td>
</tr>
<tr>
<td></td>
<td>SO₄²⁻</td>
<td>40</td>
<td>mg/L</td>
<td>250*</td>
</tr>
<tr>
<td></td>
<td>TA</td>
<td>0</td>
<td>°F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAC</td>
<td>27.7</td>
<td>°F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TH</td>
<td>32.2</td>
<td>°F</td>
<td></td>
</tr>
<tr>
<td>Chimique (substances indésirables)</td>
<td>NH₄⁺</td>
<td>< 0.020</td>
<td>mg/L</td>
<td>0.1*</td>
</tr>
<tr>
<td></td>
<td>NO₂⁻</td>
<td><0.050</td>
<td>mg/L</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>NO₃⁻</td>
<td>6</td>
<td>mg/L</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>COT</td>
<td>0.9</td>
<td>mg/L</td>
<td>2.0*</td>
</tr>
<tr>
<td>Chimique (Autres)</td>
<td>Chlore libre</td>
<td>0.12</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlore total</td>
<td>0.15</td>
<td>mg/L</td>
<td></td>
</tr>
</tbody>
</table>

Réservoir : Le Poirier Jaune
Date Prélèvement : 06/02/2013

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Paramètres</th>
<th>Unités</th>
<th>Valeurs</th>
<th>Normes / Réf qualité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiologiques</td>
<td>Escherichia Coli</td>
<td>UFC/100 mL</td>
<td><1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Entérocoques</td>
<td>UFC/100 mL</td>
<td><1</td>
<td>0</td>
</tr>
<tr>
<td>Organoleptiques</td>
<td>Couleur</td>
<td>< 5</td>
<td>U PrCo</td>
<td>15*</td>
</tr>
<tr>
<td></td>
<td>Turbidité</td>
<td>0.3</td>
<td>NTU</td>
<td>2.0*</td>
</tr>
<tr>
<td>Chimique (Structure Naturelle)</td>
<td>pH</td>
<td>7.40</td>
<td>Unité pH</td>
<td>6.5 – 9.0*</td>
</tr>
<tr>
<td></td>
<td>Conductivité</td>
<td>605</td>
<td>µs/cm</td>
<td>200 – 1100*</td>
</tr>
<tr>
<td></td>
<td>Cl⁻</td>
<td>12</td>
<td>mg/L</td>
<td>250*</td>
</tr>
<tr>
<td></td>
<td>SO₄²⁻</td>
<td>37</td>
<td>mg/L</td>
<td>250*</td>
</tr>
<tr>
<td></td>
<td>TA</td>
<td>0</td>
<td>°F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAC</td>
<td>28.1</td>
<td>°F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TH</td>
<td>31.5</td>
<td>°F</td>
<td></td>
</tr>
<tr>
<td>Chimique (substances indésirables)</td>
<td>NH₄⁺</td>
<td>< 0.020</td>
<td>mg/L</td>
<td>0.1*</td>
</tr>
<tr>
<td></td>
<td>NO₂⁻</td>
<td><0.050</td>
<td>mg/L</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>NO₃⁻</td>
<td>5</td>
<td>mg/L</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>COT</td>
<td>0.8</td>
<td>mg/L</td>
<td>2.0*</td>
</tr>
<tr>
<td>Chimique (Autres)</td>
<td>Chlore libre</td>
<td>0.15</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlore total</td>
<td>0.17</td>
<td>mg/L</td>
<td></td>
</tr>
</tbody>
</table>

* Référence qualité
Réservoir : Les Josetteries

Date Prélèvement : 19/09/2012

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Paramètres</th>
<th>Unités</th>
<th>Valeurs</th>
<th>Normes / Réf qualité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiologiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia Coli</td>
<td>UFC/100 mL</td>
<td><1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Entérocoques</td>
<td>UFC/100 mL</td>
<td><1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Organoleptiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Couleur</td>
<td>< 5</td>
<td>U PtCo</td>
<td>15*</td>
<td></td>
</tr>
<tr>
<td>Turbidité</td>
<td>0.14</td>
<td>NFU</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Chimique (Structure Naturelle)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.65</td>
<td>Unité pH</td>
<td>6.5 – 9.0*</td>
<td></td>
</tr>
<tr>
<td>Conductivité</td>
<td>806</td>
<td>µs/cm</td>
<td>200 – 1100*</td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>39</td>
<td>mg/L</td>
<td>250*</td>
<td></td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>48</td>
<td>mg/L</td>
<td>250*</td>
<td></td>
</tr>
<tr>
<td>TAC</td>
<td>34.6</td>
<td>°F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH</td>
<td>44.5</td>
<td>°F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chimique (substances indésirables)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>< 0.020</td>
<td>mg/L</td>
<td>0.1*</td>
<td></td>
</tr>
<tr>
<td>NO₂⁻</td>
<td><0.050</td>
<td>mg/L</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>20</td>
<td>mg/L</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>COT</td>
<td>1.2</td>
<td>mg/L</td>
<td>2.0*</td>
<td></td>
</tr>
<tr>
<td>Chimique (Autres)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlore libre</td>
<td>0.2</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlore total</td>
<td>0.25</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Référence qualité

6.2.3 Analyse de Distribution : Point de Prélèvement

Prélèvement : Maison de retraite à Nogent le Bernard (Robinet cuisine)

Date Prélèvement : 05/11/2012

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Paramètres</th>
<th>Unités</th>
<th>Valeurs</th>
<th>Normes / Réf qualité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiologiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia Coli</td>
<td>UFC/100 mL</td>
<td><1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Entérocoques</td>
<td>UFC/100 mL</td>
<td><1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Organoleptiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Couleur</td>
<td>< 5</td>
<td>U PtCo</td>
<td>15*</td>
<td></td>
</tr>
<tr>
<td>Turbidité</td>
<td>0.16</td>
<td>NFU</td>
<td>2.0*</td>
<td></td>
</tr>
<tr>
<td>Chimique (Structure Naturelle)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.45</td>
<td>Unité pH</td>
<td>6.5 – 9.0*</td>
<td></td>
</tr>
<tr>
<td>Conductivité</td>
<td>720</td>
<td>µs/cm</td>
<td>200 – 1100*</td>
<td></td>
</tr>
<tr>
<td>Chimique (substances indésirables)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>< 0.020</td>
<td>mg/L</td>
<td>0.1*</td>
<td></td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>15</td>
<td>mg/L</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Chimique (Autres)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlore libre</td>
<td>0.13</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlore total</td>
<td>0.14</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Référence qualité
Prélèvement : Maison de retraite à Nogent le Bernard (Robinet cuisine)
Date Prélèvement : 06/12/2012

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Paramètres</th>
<th>Unités</th>
<th>Valeurs</th>
<th>Normes / Réf qualité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiologiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia Coli</td>
<td>UFC/100 mL</td>
<td><1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Entérocoques</td>
<td>UFC/100 mL</td>
<td><1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Organoleptiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Couleur</td>
<td>< 5</td>
<td>U PrCo</td>
<td>15*</td>
<td></td>
</tr>
<tr>
<td>Turbidité</td>
<td>0.15</td>
<td>NFU</td>
<td>2.0*</td>
<td></td>
</tr>
<tr>
<td>Chimique (Structure Naturelle)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.45</td>
<td>Unité pH</td>
<td>6.5 – 9.0*</td>
<td></td>
</tr>
<tr>
<td>Conductivité</td>
<td>687</td>
<td>µs/cm</td>
<td>200 – 1100*</td>
<td></td>
</tr>
<tr>
<td>Chimique (substances indésirables)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>< 0.020</td>
<td>mg/L</td>
<td>0.1*</td>
<td></td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>10</td>
<td>mg/L</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Chimique (Autres)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlore libre</td>
<td>0.19</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlore total</td>
<td>0.24</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Référence qualité

Prélèvement : Maison de retraite à Nogent le Bernard (Robinet cuisine)
Date Prélèvement : 06/02/2013

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Paramètres</th>
<th>Unités</th>
<th>Valeurs</th>
<th>Normes / Réf qualité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiologiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia Coli</td>
<td>UFC/100 mL</td>
<td><1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Entérocoques</td>
<td>UFC/100 mL</td>
<td><1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Organoleptiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Couleur</td>
<td>< 5</td>
<td>U PrCo</td>
<td>15*</td>
<td></td>
</tr>
<tr>
<td>Turbidité</td>
<td>0.46</td>
<td>NFU</td>
<td>2.0*</td>
<td></td>
</tr>
<tr>
<td>Chimique (Structure Naturelle)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.45</td>
<td>Unité pH</td>
<td>6.5 – 9.0*</td>
<td></td>
</tr>
<tr>
<td>Conductivité</td>
<td>764</td>
<td>µs/cm</td>
<td>200 – 1100*</td>
<td></td>
</tr>
<tr>
<td>Chimique (substances indésirables)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>< 0.020</td>
<td>mg/L</td>
<td>0.1*</td>
<td></td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>17</td>
<td>mg/L</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Chimique (Autres)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlore libre</td>
<td>0.22</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlore total</td>
<td>0.25</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Référence qualité

Remarques :

Les trois dernières analyses montrent des résultats assez constants pour l’ensemble des paramètres. Il n’y aucun dépassement.
La concentration en chlore augmente, elle est due à la concentration de chlore injectée en sortie de réservoir.
Prélèvement : Cimetière à Avezé
Date Prélèvement : 05/12/2012

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Paramètres</th>
<th>Unités</th>
<th>Valeurs</th>
<th>Normes / Réf qualité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiologiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia Coli</td>
<td>UFC/100 mL</td>
<td><1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Entérocoques</td>
<td>UFC/100 mL</td>
<td><1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Organoleptiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Couleur</td>
<td>< 5</td>
<td>U PtCo</td>
<td>15*</td>
<td></td>
</tr>
<tr>
<td>Turbidité</td>
<td>0.14</td>
<td>NFU</td>
<td>2.0*</td>
<td></td>
</tr>
<tr>
<td>Chimique (Structure Naturelle)</td>
<td>pH</td>
<td>7.95</td>
<td>Unité pH</td>
<td>6.5 – 9.0*</td>
</tr>
<tr>
<td></td>
<td>Conductivité</td>
<td>546</td>
<td>µs/cm</td>
<td>200 – 1100*</td>
</tr>
<tr>
<td>Chimique (substances indésirables)</td>
<td>NH₄⁺</td>
<td>< 0.020</td>
<td>mg/L</td>
<td>0.1*</td>
</tr>
<tr>
<td></td>
<td>NO₃⁻</td>
<td>13</td>
<td>mg/L</td>
<td>50</td>
</tr>
<tr>
<td>Chimique (Autres)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlore libre</td>
<td>0.05</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlore total</td>
<td>0.06</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Définition de l’approvisionnement en eau potable

L'évaluation des unités de production est réalisée à partir de la démarche proposée par les Agences de l'Eau, intitulée : « Outil Inter agences d'évaluation de la sécurité de l'approvisionnement en eau potable d'une collectivité locale, 1997 ». L'objectif est d'évaluer la sécurité d'approvisionnement en eau potable d'une collectivité, par rapport au risque d'arrêt du service public suite à une pollution accidentelle de la ressource.

La méthodologie s'appuie sur deux indicateurs :

- la probabilité d'arrêt du service, P ;
- la gravité de la conséquence d'un arrêt de service, G.

7.1.1 INDICATEUR DE PROBABILITÉ (P)

D’après la méthodologie proposée par l’Agence de l’Eau, la probabilité pour qu'un arrêt du service se produise suite à une pollution dépend des paramètres suivants :

- Du type de ressource ;
- De l'environnement de la ressource ;
- De l'existence de dispositifs préventifs ;
- De l'existence de dispositifs curatifs.

Chaque paramètre est affecté d'une note dont les échelles de valeurs sont détaillées dans les paragraphes suivants. Pour tenir compte de leur poids relatif, on utilise les coefficients pondérants suivants pour obtenir l'indicateur

\[P = 0,35 \text{Note}_1 + 0,65 \text{Note}_2 + 0,40 \text{Note}_3 + 0,10 \text{Note}_4 \]

Note01 : note relative à la nature de la ressource
Note02 : note relative à l'environnement de la ressource
Note03 : note relative aux dispositifs préventifs
Note04 : note relative aux dispositifs curatifs

Plus l'indicateur probabilité est élevé, plus le risque de contamination de la ressource et d'arrêt du service d'eau est élevé.
Note 01

Les valeurs sont d'autant plus élevées que la ressource est vulnérable du fait de sa nature

<table>
<thead>
<tr>
<th>Nature de la ressource</th>
<th>Note 01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivière</td>
<td>100</td>
</tr>
<tr>
<td>Karst</td>
<td>90</td>
</tr>
<tr>
<td>Lac</td>
<td>80</td>
</tr>
<tr>
<td>Nappe alluviale ou aquifère libre</td>
<td>50</td>
</tr>
<tr>
<td>Nappe captive</td>
<td>5</td>
</tr>
</tbody>
</table>

Note 02

L'environnement de la ressource est relatif à la zone située en amont hydraulique des captages. Pour un captage donné, on retient la note la plus pénalisante.

<table>
<thead>
<tr>
<th>Environnement de la ressource</th>
<th>Note 02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industriel</td>
<td>100</td>
</tr>
<tr>
<td>Transport</td>
<td>90</td>
</tr>
<tr>
<td>Urbain</td>
<td>80</td>
</tr>
<tr>
<td>Agricole</td>
<td>30</td>
</tr>
<tr>
<td>Naturel</td>
<td>5</td>
</tr>
</tbody>
</table>

Note 03

Les dispositifs préventifs permettent de prévenir ou de réagir face à une pollution accidentelle de la ressource.
Etant d'efficacités différentes suivant le type de ressource, deux notations ont été établies. Les notes sont négatives car les dispositifs compensent la situation existante caractérisée par le type et l'environnement de la ressource.

<table>
<thead>
<tr>
<th>Dispositifs préventifs</th>
<th>Note 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni périmètre de protection, ni système d'alerte</td>
<td>0</td>
</tr>
<tr>
<td>Système d'alerte sans périmètre de protection</td>
<td>-50</td>
</tr>
<tr>
<td>Périmètre de protection sans système d'alerte</td>
<td>-20</td>
</tr>
<tr>
<td>Périmètre de protection et système d'alerte</td>
<td>-80</td>
</tr>
</tbody>
</table>
Note 04

On suppose que certaines filières de traitement peuvent absorber (complètement ou partiellement) un pic de pollution accidentelle dans les eaux brutes (charbon actif en poudre notamment).

<table>
<thead>
<tr>
<th>Dispositifs curatifs</th>
<th>Note 04</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 : aucun traitement</td>
<td>0</td>
</tr>
<tr>
<td>T1: simple désinfection</td>
<td>-10</td>
</tr>
<tr>
<td>T2 : traitement physico-chimique sans oxydation (filtration, neutralisation, reminéralisation, décarbonatation), ou microfiltration</td>
<td>-20</td>
</tr>
<tr>
<td>T3 : traitement physico-chimique avec oxydation sans affinage par charbon actif</td>
<td>-30</td>
</tr>
<tr>
<td>T4 : traitement physico-chimique avec oxydation et affinage par charbon actif en grains ou ultrafiltration</td>
<td>-50</td>
</tr>
<tr>
<td>CAP : charbon actif en poudre ou équivalent ajouté à T2, T3, ou T4 ou nanofiltration</td>
<td>-80</td>
</tr>
</tbody>
</table>

7.1.2 INDICATEUR DE GRAVITE (G)

L'indicateur gravité traduit l'impact de l'arrêt du service. Il correspond au pourcentage de réduction de la quantité d'eau distribuée par la collectivité. Il est calculé, pour chaque ressource de la collectivité, de la manière suivante :

\[G = 100 \times (1 - \frac{\text{Débit produit en période de crise}}{\text{Besoin journalier moyen}}) \]

Le débit produit en situation de crise est la somme des capacités des productions journalières de toutes les ressources non polluées dont dispose la collectivité, ces dernières étant considérées à leur capacité minimale.

Le débit produit en période de crise sera donc calculé en faisant la somme des ressources suivantes :
- Les autres ressources exploitées par la collectivité (capacité en période critique en m³/j) ;
- Les interconnexions avec d'autres collectivités, utilisées uniquement en cas de secours (débit maximal disponible en m³/j) ;
- Les ressources de secours, c'est-à-dire qui ne sont pas exploitées en temps normal par la collectivité ;
- Les réserves d'eau brute et d'eau potable. On prend comme hypothèse que ces réserves doivent pouvoir compenser un événement d'eau moins quatre jours, et que seul le volume d'eau potable dépassant 24 heures de consommation peut être considéré comme une réserve de secours.

Le débit journalier équivalent des réserves d'eau brute et d'eau potable de la collectivité est calculé de la façon suivante :

\[Q_{réserves} = \frac{1}{4} \times (\text{Volume réserves d'eau brute} + \text{Volume réserves d'eau potable dépassant 24h}) \]
7.1.3 **Determination de l’Indicateur de Probabilité**

Les puits du site de la Tannerie et du Géolet captent leur eau dans une nappe souterraine et sont situés dans une zone agricole.
Il n’existe actuellement une DUP regroupant les 4 forages situé sur le site de la Tannerie et du Géolet, par contre il n’y a aucun système d’alarme en cas de pollution de la nappe.
Enfin, les 4 puits sont raccordés à la station de traitement de démanganisation et déferrisation avec la mise en place d’une chloration en sortie de traitement.

La source de la Haute Fontaine capte son eau dans la nappe alluviale et est situé dans une zone agricole.
De plus, il n’existe actuellement pas de Périmètre de protection en place ni de système d’alarme en cas de pollution de la nappe.
Enfin, il ne dispose d’aucun traitement, uniquement une chloration.

<table>
<thead>
<tr>
<th>Zone</th>
<th>Note 1</th>
<th>Note 2</th>
<th>Note 3</th>
<th>Note 4</th>
<th>P</th>
<th>Indice P Retenu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forage du Géolet*</td>
<td>50</td>
<td>30</td>
<td>-50</td>
<td>-20</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Forage de la Tannerie F1</td>
<td>50</td>
<td>30</td>
<td>-50</td>
<td>-20</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Forage de la Tannerie F2</td>
<td>50</td>
<td>30</td>
<td>-50</td>
<td>-20</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Forage de la Tannerie F3</td>
<td>50</td>
<td>30</td>
<td>-50</td>
<td>-20</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Sources des Hautes Fontaines</td>
<td>50</td>
<td>30</td>
<td>-50</td>
<td>-10</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Plus l’indicateur de Probabilité est élevé, plus le risque que le service soit arrêté en raison d’une pollution accidentelle est élevé sur la zone considérée.

7.1.4 **Determination de l’Indicateur de Gravité**

Les ressources du syndicat sont regroupées essentiellement en 4 forages.
Le forage du Géolet et le forage de la Tannerie F1 puisent dans la même nappe à une profondeur importante (150 m)
Les forages de la Tannerie F2 et F3 puisent eux aussi dans la même nappe cependant la profondeur est beaucoup moins importante (40 m).

En cas de pollution de la nappe à forte profondeur, le forage du Géolet et de la Tannerie F1 seront tous les deux hors service.
En cas de pollution de la nappe à faible profondeur, les forages Tannerie F2 et F3 seront tous les deux hors service.

Au vue des différences de profondeurs entre les 2 nappes, il est très peu probable que les 2 nappes soient polluées en même temps. De ce fait, 2 forages sur les 4 en fonctionnement pourraient prendre le relais.

Pour information, il existe seulement une convention de vente entre le SIAEP du Perche Sarthois et la Commune de la Ferté Bernard.
Hypothèse 1 : Consommation des Abonnés en 2011 + Vente de 600 m³/j à la Commune de la Ferté Bernard soit 459 948 m³/an

La consommation moyenne journalière (abonnée + vente) en 2011 sur le SIAEP du Perche Sarthois est de 1 260 m³/j, et le volume total de stockage de 2 800 m³.

En fonction des données précédente, le débit de réserves sur l’ensemble du SIAEP de 385 m³/j.

Production journalière en temps de crise (20 h de fonctionnement) :
- Forage Tannerie F1 : 296 m³/j
- Forage Tannerie F2 : 516 m³/j
- Forage Tannerie F3 : 931 m³/j
- Forage du Géolet : 1559 m³/j
- Sources des Hautes Fontaines : 140 m³/j

<table>
<thead>
<tr>
<th>Géolet et Tannerie F1 défaillants</th>
<th>Tannerie F2 et F3 défaillants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production en période de crise (m³/j)*</td>
<td>1 588</td>
</tr>
<tr>
<td>Volume de stockage total (m³)</td>
<td>2 800</td>
</tr>
<tr>
<td>Besoin (m³/j)</td>
<td>1 260</td>
</tr>
<tr>
<td>Débit de réserve (m³/j)</td>
<td>385</td>
</tr>
<tr>
<td>Indice de Gravité G</td>
<td>-56,5%</td>
</tr>
<tr>
<td>Indice de Gravité retenu G</td>
<td>0 %</td>
</tr>
</tbody>
</table>

* Production de crise : 20 h par jour

Hypothèse 2 : Consommation des Abonnés en 2011 + Vente de 1 500 m³/j à la Commune de la Ferté Bernard soit 788 880 m³/an

La consommation moyenne journalière (abonnée + vente) sur le SIAEP du Perche Sarthois serait de 2 161 m³/j, et le volume total de stockage de 2 800 m³.

En fonction des données précédente, le débit de réserves sur l’ensemble du SIAEP de 160 m³/j.

Production journalière en temps de crise (20 h de fonctionnement) :
- Forage Tannerie F1 : 296 m³/j
- Forage Tannerie F2 : 516 m³/j
- Forage Tannerie F3 : 931 m³/j
- Forage du Géolet : 1559 m³/j
- Sources des Hautes Fontaines : 140 m³/j
Géolet et Tannerie F1 défaillants | Tannerie F2 et F3 défaillants
--- | ---
Production en période de crise (m³/j)* | 1 588 | 1 995
Volume de stockage total (m³) | 2 800 | 2 800
Besoin (m³/j) | 2 161 | 2 161
Débit de réserve (m³/j) | 160 | 160
Indice de Gravité G | 19.2 % | 0.3 %
Indice de Gravité retenu G | 19.2 % | 0.3 %

* Production de crise : 20 h par jour

7.1.5 CONCLUSIONS – OUTILS AESN

Nous classons ensuite chacun des cas afin de déterminer l’état de sécurisation des ressources considérées et les priorités d’actions éventuelles :

- Classe 1 : G < 50 et P < 50 ➔ Bonne sécurité de la production ;
- Classe 2 : G < 50 et P > 50 ➔ Sécurité de la production à améliorer par des actions de protection de la ressource (mise en place d’alarme de pollution, mise en place d’une filière de traitement, amélioration des équipements, …) ;
- Classe 3 : G > 50 et P < 50 ➔ Sécurité de la production à améliorer par des actions de diversification de la ressource (interconnexions, recherche d’une nouvelle ressource, …) ;
- Classe 4 : G > 50 et P > 50 ➔ Sécurité de la production insuffisante ;

Dans notre cas :

- **Hypothèse 1** :
 La sécurisation de la ressource de la Tannerie (F1, F2, F3) du Géolet est de classe 1, c’est-à-dire qu’il y a une bonne sécurité de la production.

- **Hypothèse 2** :
 La sécurisation de la ressource de la Tannerie (F1, F2, F3) du Géolet est de classe 3, c’est-à-dire qu’il est nécessaire de réaliser des améliorations par une diversification de la ressource.

Les forages de la Tannerie sont les principales ressources du Syndicat.

Dans l’hypothèse future d’une vente d’eau plus importante à la commune de la Ferté Bernard, il est indispensable de considérer sérieusement la gravité des conséquences qu’aurait une pollution d’une partie de la ressource.
7.2 **Paramètres techniques**

Il est également possible de dégager des paramètres techniques intervenant dans la sécurisation de l'alimentation en eau potable des abonnés du SIAEP du Perche Sarthois.

Nous choisissons de considérer 2 paramètres qui nous paraissent les plus importants :

- Le risque de panne technique
- Le risque de casse d'une canalisation majeure

7.2.1 Méthodologie

Sur le modèle de l'outil proposé par l'AESN, nous utiliserons un système de notation de la probabilité d'intervention d'un événement tel qu'une casse ou une panne.

Le système de notation utilisé est le suivant :

Note 05

La note 05 évalue le risque d'un arrêt de la station de pompage de l'unité de production en tenant compte de l'éventuelle présence de pompe de secours et/ou de groupe électrogène.

<table>
<thead>
<tr>
<th>Pannes techniques</th>
<th>Note 05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groupe électrogène et pompes de secours installées</td>
<td>0</td>
</tr>
<tr>
<td>Pompes de secours installées sans groupe électrogène</td>
<td>30</td>
</tr>
<tr>
<td>Groupe électrogène sans pompes de secours installées</td>
<td>50</td>
</tr>
<tr>
<td>Ni groupe électrogène, ni pompes de secours</td>
<td>80</td>
</tr>
</tbody>
</table>

Note 06

La note 06 évalue le risque de rupture d'une conduite maîtresse. Celui-ci est proportionnel à la longueur du réseau et à l'âge des canalisations.

<table>
<thead>
<tr>
<th>Note 06</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Age des canalisations</th>
<th>Neuve (< 20 ans)</th>
<th>Moyenne (20 à 50 ans)</th>
<th>Ancienne (>50 ans)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eloignement au réservoir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proche</td>
<td>0</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Moyennement proche</td>
<td>20</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>Eloigné</td>
<td>40</td>
<td>70</td>
<td>100</td>
</tr>
</tbody>
</table>

La note NT représentant la probabilité d'intervention d'une casse ou d'une panne est ainsi calculée :

\[
\text{Note NT} = 0,35\times\text{Note05} + 0,65\times\text{Note06}
\]
7.2.2 **DETERMINATION DE LA NOTE NT**

Les différents puits (Tannerie et Géolet) sont proches de la station de traitement, les canalisations arrivant au niveau de l'usine sont assez âgée.
Les installations de surpressions des puits présentent au moins une pompe en secours et ne sont pas équipées d’un groupe électrogène.

<table>
<thead>
<tr>
<th>Zone</th>
<th>Note 5</th>
<th>Note 6</th>
<th>NT</th>
<th>NT Retenu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forage du Géolet*</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Forage de la Tannerie F1</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Forage de la Tannerie F2</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Forage de la Tannerie F3</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

7.2.3 **CONCLUSION**

Nous classons ensuite chacun des cas afin de déterminer l'état de sécurisation techniques des ressources considérées et les priorités d'actions éventuelles :

- Classe 1 : NT < 50 ➔ Bonne sécurité technique de la ressource ;
- Classe 2 : NT > 50 ➔ Sécurité technique de la ressource à améliorer

Dans notre cas :

- L’ensemble des puits du SIAEP du Perche Sarthois sont en classe 1, c’est-à-dire que les ressources sont sécurisées.
7.3 **INDICE : SECURITE A LA PRODUCTION**

7.3.1 **SITUATION ACTUELLE**

En nous appuyant sur l’*indice de Sécurité à la Production (SP)*, nous allons vérifier que les ressources du SIAEP du Perche Sarthois sont suffisantes pour assurer l’alimentation en eau potable de l’ensemble des abonnés, notamment en période de pointe.

Ce coefficient se détermine comme suit :

\[
SP = \frac{\text{Capacité de production journalière}}{\text{Besoin du jour de pointe}}
\]

- **Production globale du SIAEP:**

Besoin moyen journalier : Consommation des Abonnés en 2011 + Vente de 600 m³/j à la Commune de la Ferté Bernard soit 459 948 m³/an

<table>
<thead>
<tr>
<th>Capacité de production*</th>
<th>3 442 m³/j</th>
</tr>
</thead>
<tbody>
<tr>
<td>Besoin moyen</td>
<td>1 260 m³/j</td>
</tr>
<tr>
<td>Coefficient de pointe</td>
<td>1,6</td>
</tr>
<tr>
<td>Besoin du jour de pointe</td>
<td>2 016 m³/j</td>
</tr>
<tr>
<td>Indice SP</td>
<td>1.71</td>
</tr>
</tbody>
</table>

* Capacité moyenne de l’ensemble des ressources durant l’année 2012 sur 20h.

Cet Indice de Sécurité à la Production est correct, il montre que les ressources du SIAEP sont suffisantes.

7.3.2 **SITUATION EN 2028**

Hypothèse 1 :

Besoin moyen journalier : Consommation des Abonnés en 2028 + Vente de 600 m³/j à la Commune de la Ferté Bernard soit 504 435 m³/an

<table>
<thead>
<tr>
<th>Capacité de production*</th>
<th>3 442 m³/j</th>
</tr>
</thead>
<tbody>
<tr>
<td>Besoin moyen</td>
<td>1 382 m³/j</td>
</tr>
<tr>
<td>Coefficient de pointe</td>
<td>1,6</td>
</tr>
<tr>
<td>Besoin du jour de pointe</td>
<td>2 211 m³/j</td>
</tr>
<tr>
<td>Indice SP</td>
<td>1.56</td>
</tr>
</tbody>
</table>

* Capacité moyenne de l’ensemble des ressources durant l’année 2012 sur 20h.
Hypothèse 2 :
Besoin moyen journalier : Consommation des Abonnés en 2028 + Vente de 1000 m³/j à la Commune de la Ferté Bernard soit 650 867 m³/an

<table>
<thead>
<tr>
<th>Capacité de production*</th>
<th>3 442 m³/j</th>
</tr>
</thead>
<tbody>
<tr>
<td>Besoin moyen</td>
<td>1 783 m³/j</td>
</tr>
<tr>
<td>Coefficient de pointe</td>
<td>1,6</td>
</tr>
<tr>
<td>Besoin du jour de pointe</td>
<td>2 853 m³/j</td>
</tr>
<tr>
<td>Indice SP</td>
<td>1.21</td>
</tr>
</tbody>
</table>

* Capacité moyenne de l’ensemble des ressources durant l’année 2012 sur 20h.

Hypothèse 3 :
Besoin moyen journalier : Consommation des Abonnés en 2028 + Vente de 1500 m³/j à la Commune de la Ferté Bernard soit 833 367 m³/an

<table>
<thead>
<tr>
<th>Capacité de production*</th>
<th>3 442 m³/j</th>
</tr>
</thead>
<tbody>
<tr>
<td>Besoin moyen</td>
<td>2 283 m³/j</td>
</tr>
<tr>
<td>Coefficient de pointe</td>
<td>1,6</td>
</tr>
<tr>
<td>Besoin du jour de pointe</td>
<td>3 653 m³/j</td>
</tr>
<tr>
<td>Indice SP</td>
<td>0.94</td>
</tr>
</tbody>
</table>

* Capacité moyenne de l’ensemble des ressources durant l’année 2012 sur 20h.

- Conclusion

Au niveau de la situation en 2028, l’Indice de Sécurité à la Production est bon pour les deux premières hypothèses. Il montre pour ces 2 cas que les ressources du SIAEP sont suffisantes pour assurer l'alimentation en eau potable des abonnés.

En ce qui concerne l’hypothèse n°3, l’indice de Sécurité est inférieur à 1 et donc le syndicat serait dans l’incapacité de fournir le besoin demandé.

Remarque :

Pour la détermination de cet indice, il a été supposé que les temps de fonctionnement de chaque pompe seraient de 20h par jour. Actuellement les pompes fonctionnent entre 5 et 9 heures par jours.
7.4 **INDICE : COEFFICIENT DE STOCKAGE**

Un autre indice présente un intérêt certain, le **Coefficient de Stockage (CS)**. Celui-ci nous permet de s’assurer de la capacité des installations de stockage à assurer la fourniture du besoin de pointe en cas de défaillance des installations de production.

Ce coefficient est déterminé ainsi :

\[
CS = \frac{\text{Réserve totale}}{\text{Besoin du jour de pointe}}
\]

7.4.1 COEFFICIENT DE STOCKAGE SUR L’ENSEMBLE DU SYNDICAT – SITUATION ACTUELLE

Si l’on considère l’ensemble du SIAEP, nous pouvons déterminer un coefficient de stockage sur l’ensemble des besoins du Syndicat d’après la capacité de stockage totale du Syndicat :

<table>
<thead>
<tr>
<th>Capacité de stockage</th>
<th>2 800 m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Besoin moyen</td>
<td>1 260 m3/j</td>
</tr>
<tr>
<td>Coefficient de pointe</td>
<td>1,6</td>
</tr>
<tr>
<td>Besoin du jour de pointe</td>
<td>2 016 m3/j</td>
</tr>
<tr>
<td>Indice CS</td>
<td>1,39</td>
</tr>
</tbody>
</table>

Ce Coefficient de 1,39 montre que les capacités de stockage du SIAEP en situation actuelle sont suffisantes en cas de crise.

7.4.2 COEFFICIENT DE STOCKAGE SUR L’ENSEMBLE DU SYNDICAT – SITUATION 2028

Si l’on considère l’ensemble du SIAEP, nous pouvons déterminer un coefficient de stockage sur l’ensemble des besoins du Syndicat d’après la capacité de stockage totale du Syndicat :

Hypothèse 1 :

Besoin moyen journalier : Consommation des Abonnés en 2028 + Vente de 600 m3/j à la Commune de la Ferté Bernard soit 504 435 m3/an

<table>
<thead>
<tr>
<th>Capacité de stockage</th>
<th>2 800 m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Besoin moyen</td>
<td>1 382 m3/j</td>
</tr>
<tr>
<td>Coefficient de pointe</td>
<td>1,6</td>
</tr>
<tr>
<td>Besoin du jour de pointe</td>
<td>2 211 m3/j</td>
</tr>
<tr>
<td>Indice CS</td>
<td>1.27</td>
</tr>
</tbody>
</table>

Ce Coefficient de 1.27 montre que les capacités de stockage du SIAEP en 2028 dans le cas de l’hypothèse 1 sont suffisantes en cas de crise.
Hypothèse 2 :
Besoin moyen journalier : Consommation des Abonnés en 2028 + Vente de 1000 m3/j à la Commune de la Ferté Bernard soit 650 867 m3/an

<table>
<thead>
<tr>
<th>Capacité de stockage</th>
<th>2 800 m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Besoin moyen</td>
<td>1 783 m3/j</td>
</tr>
<tr>
<td>Coefficient de pointe</td>
<td>1,6</td>
</tr>
<tr>
<td>Besoin du jour de pointe</td>
<td>2 853 m3/j</td>
</tr>
<tr>
<td>Indice CS</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Ce Coefficient de 0.98 montre que les capacités de stockage du SIAEP en 2028 dans le cas de l'hypothèse 2 sont suffisantes en cas de crise.

Hypothèse 3 :
Besoin moyen journalier : Consommation des Abonnés en 2028 + Vente de 1500 m3/j à la Commune de la Ferté Bernard soit 833 367 m3/an

<table>
<thead>
<tr>
<th>Capacité de stockage</th>
<th>2 800 m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Besoin moyen</td>
<td>2 283 m3/j</td>
</tr>
<tr>
<td>Coefficient de pointe</td>
<td>1,6</td>
</tr>
<tr>
<td>Besoin du jour de pointe</td>
<td>3 653 m3/j</td>
</tr>
<tr>
<td>Indice CS</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Ce Coefficient de 0.76 montre que les capacités de stockage du SIAEP en 2028 dans le cas de l'hypothèse 3 sont insuffisantes en cas de crise.

7.5 **SECOURS EN PROVENANCE DE L’EXTERIEUR**

Le SIEAP du Perche Sarthois n’a actuellement aucune convention d’achat avec les communes ou les Syndicats des alentours.
En cas de problème de production au sein du SIAEP, aucun apport d’eau extérieur n’est envisageable.
7.6 **DEFENSE INCENDIE**

Le récapitulatifs des différents poteaux et bornes d’incendie sur les communes du syndicat sont en Annexe 2.

Suite à l’analyse des documents fournis pour l’ensemble des communes appartenant au SIAEP du Perche Sarthois, il apparaît de nombreuses anomalies des poteaux ou bornes incendie :

- Commune de Dehaut :

Le point d’eau 3 est non conforme car il y un manque de pression
Les points d’eau 1 et 3 sont non conformes car le débit en sortie pour une pression de 1 bar est inférieur à 60 m3/h.

- Commune de la Chapelle-du-Bois :

Les points d’eau 1 à 8, 12 et 14 n’ont pas été vérifiés correctement. En effet il n’y aucune information concernant les débits en sortie pour une pression de 1 bar.

- Commune d’Avezé :

Les points d’eau 1, 2, 5, 6 et 7 sont non conformes car il y un manque de pression
Les points d’eau 1, 2, 4, 5, 7, 8 et 9 sont non conformes car le débit en sortie pour une pression de 1 bar est inférieur à 60 m3/h.

- Commune de Nogent le Bernard :

Les points d’eau 3, 5, 7 et 10 n’ont pas été vérifiés
Les points d’eau 8, 12, 13, 14, 15 et 16 sont non conformes car il y un manque de pression
Les points d’eau 8, 12, 13, 14, 15 et 16 sont non conformes car le débit en sortie pour une pression de 1 bar est inférieur à 60 m3/h.

- Commune de Préval :

Les points d’eau 1, 2, 5, 7 n’ont pas été vérifiés

- Commune de Souvigné-sur-mème :

Le point d’eau 4 n’a pas été vérifié

Remarque :

Les différentes communes ont délégué ce service au Syndicat, cependant il est à rappeler que les essais au niveau des poteaux et bornes incendie doivent être effectués chaque année.
7.7 CONCLUSION

Suite à l’étude de différents paramètres caractérisant la capacité du SIAEP du Perche Sarthois à assurer la fourniture d’eau potable à ses abonnés, nous pouvons dire :

- Il est indispensable de diversifier les ressources du SIAEP du Perche Sarthois, notamment en équipant le forage de la Landirère permettant d’avoir une ressource supplémentaire ;

- Il est nécessaire de prévoir une sécurisation technique des ressources de la Tannerie et du Géolet par la mise en place d’un groupe électrogène ;

- La capacité de stockage du Syndicat est actuellement suffisante. En effet, en 2028 dans le cas de l’hypothèse 3 la capacité de stockage ne sera plus suffisante. Il sera par conséquent nécessaire d’augmenter la capacité de stockage ;

- Il est indispensable que chacune des communes étudie précisément le fonctionnement de ses installations de défense incendie et établisse un programme de mise en conformité en donnant la priorité aux secteurs les plus exposés à des risques. Les communes pourront toujours déléguer se service au Syndicat.
8 CONCLUSION ET ÉTAT DES LIEUX PRELIMINAIRE

Suite à cette première phase d’étude, nous pouvons dégager un premier bilan de l’état du SIAEP du Perche Sarthois, de son réseau et du fonctionnement de ce dernier.

8.1 LES ATOUTS DU SYNDICAT

Le principal atout du SIAEP du Perche Sarthois est d’avoir un grand nombre de ressources.

De plus, l’eau produite par le syndicat est de bonne qualité et ne nécessite qu’un simple traitement de démanganisation et de déferrisation (Usine de la Tannerie).

La vente d’eau de près de 50% de sa production à la commune de la Ferté Bernard permet au Syndicat d’avoir un revenu financier régulier et important chaque année. Cette vente d’eau pourra dans les années à venir augmenter fortement.

8.2 LES FAIBLESSES DU SYNDICAT

Les principales faiblesses du Syndicat sont l’ancienneté de son réseau, l’absence de surveillance du réseau et la sécurisation des ressources.

Certaines installations du SIAEP sont âgées commence à se dégrader. Il y a des dégradations de certains réservoirs et des autres installations.
Les périmètres de protections immédiats ne sont pas tous aux normes. Les problèmes résultent essentiellement au niveau des hauteurs des périmètres de protection.

De plus, les installations de mesures et de surveillance du réseau sont inexistantes.
Il est donc indispensable d’envisager la mise en place d’une sectorisation sur l’ensemble du SIAEP afin d’améliorer la surveillance du réseau et ainsi de diminuer l’importance des fuites.

La sécurisation des ressources de la Tannerie et du Géolet est un enjeu majeur pour le SIAEP puisque l’alimentation de la quasi-totalité de ses abonnés et de la commune de la Ferté Bernard en dépend.
Actuellement, on constate que les ressources de la Tannerie et du Géolet sont mal sécurisées pour la raison principale qui est une absence de ressource alternative en cas de pollution.

Une des lacunes du SIAEP est la mauvaise connaissance du réseau dû à l’absence total de sectorisation. Il est indispensable, notamment pour mieux observer le fonctionnement du réseau, de mettre en place une sectorisation du réseau du Syndicat.

Enfin sa capacité de stockage, bien que suffisante actuellement, nécessitera d’être augmentée à moyen et long terme.
En effet si la vente d’eau auprès de la commune de la Ferté Bernard augmente considérable, il sera indispensable d’augmenter la capacité de stockage.
8.3 **PREMIERES PISTES DE DEVELOPPEMENT**

Au vu des principales faiblesses du SIAEP, plusieurs pistes de développement se dessinent :

- Recherche d’une ressource alternative aux ressources de de la Tannerie et de Géolet : Equipement et raccordement du forage de la Landrière.

- Sécurisation des ressources de la Tannerie et de Géolet par la mise en place :
 o De groupe électrogène ;
 o De convention de fourniture d’eau en secours par les collectivités voisines.

- Amélioration du rendement du Syndicat par la mise en place :
 o D’une campagne de recherche de fuites renforcée ;
 o D’un plan de renouvellement des canalisations les plus endommagées ;
 o D’une sectorisation du Syndicat.

- Etudes pour l’implantation d’un nouveau réservoir à l’horizon 2028.
Annexe 1 :

Analyse d’eau
Annexe 2 :

Récapitulatif des Poteaux et Bornes d’Incendie